
Moodle needs certain Shibboleth attributes
What are Moodle context levels?
Moodle 2.0 Development
UCLA Git Walkthrough (for Moodle)
Moodle MySQL Queries
UCLA Moodle Workflow Analysis (using GIT)
Common Moodle programming mistakes

Development

This article may be very old. Please reach out to local support staff if you have questions.

When logging into the http://ccle.ucla.edu (Moodle) site through the UCLA Login option, if you see
one of these error messages, see the explanation and instructions below:

Moodle needs certain Shibboleth attributes which are not present in your case. The

attributes are: ‘HTTP_SHIB_EDUPERSONPPN’ (‘yourID@ucla.edu’),

‘HTTP_SHIB_GIVENNAME’ (‘YOURFIRSTNAME’), ‘HTTP_SHIB_CN’ (‘YOURLASTNAME

’) and ‘HTTP_SHIB_UCLAOFFICIALEMAIL’ (’’)

Please contact the webmaster of this server or your Identity Provider. You are not

logged in. (comes from moodle/root/auth/shibboleth/lib.php)

In this case, everything is there except the UCLAOFFICIALEMAIL. Unfortunately, Moodle requires
that.

What to do for users who get this message: If nothing appears in the parentheses after
‘HTTP_SHIB_UCLAOFFICIALEMAIL’, that means the system does not currently have an official email
for the student. The student should logon to www.ursa.ucla.edu to setup his/her official email
designation. It may then take until the next day for that information to propagate to the system
and allow you to log in.

Note to students concurrently enrolled through UCLA Extension: If your UCLA Logon ID is
not working, the problem may be that CTS hasn’t activated your Bruin Online (BOL) services
because they have not yet received your enrollment paperwork proving your UCLA affiliation. Once
your BOL services are activated, your @ucla.edu address will get pushed into the Enterprise
Directory, which will enable successful login to CCLE through Shibbleth using UCLA Logon ID.
To expedite this happening, the student should visit the BOL help desk with their concurrent

enrollment paperwork (including the receipt showing concurrent enrollment) to have all services

Moodle needs certain
Shibboleth attributes

Official Email Missing

https://ccle.ucla.edu/mod/page/view.php?id=209487
http://ccle.ucla.edu
mailto:yourID@ucla.edu
http://www.ursa.ucla.edu

activated.

Here is an explanation from AIS of the issues involved:

“There are several emails which qualify to be official email – BOL email, Work email, LAW school
email, Anderson school email, Other Student email (URSA).

When one of the emails is first added we designate that as Official automatically, because there
would be no other eligible email for this person at that time. Subsequently there may be other
eligible emails added to the entry. When an email is deleted by the authority (for ex, Anderson
school sends a delete request for Anderson email for a person) we check if Anderson email has
been designated as Official for this entry; If yes we delete Official also. It does not make sense to
keep it Official when the underlying source email itself is deleted.

Next time an email is added to the entry, if there is already another email, we won’t designate the
newly added email as Official simply because we wouldn’t know which one to designate as Official.

URSA allows students and former students to re-designate their official email. For employees who
were never students here, we were expecting ODMP to provide the functionality, which hasn’t
come along so far.

The solution in that case if you are an employee is to contact AIS and ask them to help you
designate one of your email addresses as UCLAOFFICIALEMAIL.

You seem to be Shibboleth authenticated but Moodle didn’t receive any user

attributes. Please check that your Identity Provider releases the necessary attributes

(‘HTTP_SHIB_EDUPERSONPPN’, ‘HTTP_SHIB_GIVENNAME’, ‘HTTP_SHIB_CN’ and

‘HTTP_SHIB_UCLAOFFICIALEMAIL’) to the Service Provider Moodle is running on or

inform the webmaster of this server. (comes from moodle/root/auth/shibboleth/index.php)

Moodle didn’t receive any user
attributes

In this case, there could be three explanations that we know of:

1. System-wide problem. If no one else can login, the UCLA Shibboleth Identity Provider
could be down or having problems. Contact AIS Help Desk at 66951.

2. Individual problem. We’ve had one case where someone’s BOL EMAIL address was not in
the correct Enterprise Directory database and until it was added, this person couldn’t log
into CCLE. Contact Warren Leung at IT Services, if you suspect this could be the problem.

3. Intermittent problem. If you usually can login to CCLE and now you can’t, try closing your
web browser completely (to clear the cookies) and then try logging in again. Or, try a
different machine.

A test process to capture information at each step and send to the appropriate people.

See also: Authentication Expired

https://kb.ucla.edu/link/978
https://kb.ucla.edu/link/978
https://kb.ucla.edu/link/1345

If you’re programming with Moodle, you probably want to stick with the APIs, but if you’re trying to
track things down through the database, knowing what context levels mean can be important.
Until my colleague from CLICC found this, all I know was that 50 meant course.

Defined, at least in Moodle 1.7, in /moodle/lib/accesslib.php

// context definitions

define('CONTEXT_SYSTEM', 10);

define('CONTEXT_PERSONAL', 20);

define('CONTEXT_USER', 30);

define('CONTEXT_COURSECAT', 40);

define('CONTEXT_COURSE', 50);

define('CONTEXT_GROUP', 60);

define('CONTEXT_MODULE', 70);
define('CONTEXT_BLOCK', 80);

Forum where this was found.

http://docs.moodle.org/en/Roles_and_capabilities

What are Moodle context
levels?

http://moodle.org/mod/forum/discuss.php?d=66293
http://docs.moodle.org/en/Roles_and_capabilities

Since Moodle 2.0 brings major changes, this page extends on https://kb.ucla.edu/link/766 with
specific Moodle 2.0 docs and other resources.

http://docs.moodle.org/en/Moodle_2.0_release_notes
http://docs.moodle.org/en/Development:Migrating_contrib_code_to_2.0
http://docs.moodle.org/en/Moodle_2.0_release_notes#For_developers:_API_changes
http://docs.moodle.org/en/Category:Moodle_2.0 (there are a total of 275 pages here)
http://docs.moodle.org/en/Development:Using_jQuery_with_Moodle_2.0
http://docs.moodle.org/en/Administration_FAQ (many useful tips)
http://docs.moodle.org/en/Development:New_enrolments_in_2.0 (huge changes)

Jira and Moodle 2.0 Development, document, Jira_Setup_for_Moodle_2_v3.doc

Deprecated

PARAM_CLEAN eliminated
no longer using stripslashes or addslashes

Moodle 2.0 Development

https://kb.ucla.edu/link/766
http://docs.moodle.org/en/Moodle_2.0_release_notes
http://docs.moodle.org/en/Development:Migrating_contrib_code_to_2.0
http://docs.moodle.org/en/Moodle_2.0_release_notes#For_developers:_API_changes
http://docs.moodle.org/en/Category:Moodle_2.0
http://docs.moodle.org/en/Development:Using_jQuery_with_Moodle_2.0
http://docs.moodle.org/en/Administration_FAQ
http://docs.moodle.org/en/Development:New_enrolments_in_2.0

Very basic guide how to get GIT set up on Windows or OSX.

Documentation:

http://docs.moodle.org/en/Development:Quick_Git_start_guide_for_Moodle_development

Windows: http://help.github.com/win-set-up-git/
Mac OSX: http://help.github.com/mac-set-up-git/
Linux: http://help.github.com/linux-set-up-git/

Configure Line Endings

In order to avoid issues with line endings when cloning on to Windows machines, follow the
directions here: Dealing with line endings

Before making commits, it is useful to add your name and email:

git config --global user.name "Your Name"
git config --global user.email "Your email address"

Set these git config settings

git config --global push.default current // only push current branch to remote and set
upstream
git config --global core.ignorecase false // makes sure that git is case sensitive

UCLA Git Walkthrough (for
Moodle)

Setting up the Environment

Setting up Git global configs

http://docs.moodle.org/en/Development:Quick_Git_start_guide_for_Moodle_development
http://help.github.com/win-set-up-git/
http://help.github.com/mac-set-up-git/
http://help.github.com/linux-set-up-git/
http://help.github.com/dealing-with-lineendings/

git config --global pull.rebase true // rebase by default when doing a pull

If you want to connect to github without SSH you need a token:

Follow the directions here: Email and Github Tokens

With Github Token
git clone https://YOUR_GITHUB_USERNAME@github.com/ucla/moodle.git
./YOUR_LOCAL_MOODLE_FOLDER/

With SSH RSA-key
git clone git@github.com:ucla/moodle.git ./YOUR_LOCAL_MOODLE_FOLDER/

Our workflow is similar to the workflow mentioned in this article: http://nvie.com/posts/a-successful-
git-branching-model/

Name your git branch using our naming convention:

type/jira ticket-short description
The type, for now, should either be:

feature (something that has never existed before or an improvement to a current
feature)

Setting up your Github
repository:
Clone the repository

Work on a new
feature/patch/test/update

http://help.github.com/git-email-settings/
https://YOUR_GITHUB_USERNAME@github.com/ucla/moodle.git
mailto:git@github.com
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/

patch (a bug fix, can either come from internal or external sources)
tests (For Behat or PHPunit only branches)
update (reserved for core Moodle version and external plugin updates)

1. git checkout master

2. git pull origin master

3. git submodule update --init --recursive

4. git checkout -b <type>/CCLE-<JIRA ticket number>-<shorten ticket description>

5. Repeat the following steps as necessary:

- change file(s) -
git commit -a -m "CCLE-#### - A useful short comment summarizing what you did."

6. git push -u origin <branch_name>

7. Merge task onto TEST
1. git checkout development

2. git pull origin development

3. git merge --no-ff <branch_name>

4. git push origin development

If you run into merge conflicts when merging to development or it’s been a while since your
development branch has been branched off of master, run the following command on your
working branch:

git rebase origin/master

At this point, there could be more than one feature that is being tested! Once a

feature/patch has passed testing, then merge it to the rc branch.

Creating rc branch

1. git checkout master

2. git checkout -b origin/<release_number>-rc

3. Now merge in several branches with fixes/features that passed review
1. git merge --no-ff <feature_branch_name>

2. git push -u origin <release_number>-rc

Once rc is ready, merge it into master so it can go to prod

The numbers M.m.v.rr should be the same as the numbers for the RC branch.

1. git checkout master

2. git merge --no-ff origin/<release_number>-rc -m "Release <release_number>-gm:
Description of what was in this release/use JIRA version description"

3. git push origin master

4. git tag M.m.v.rr-gm -m "Release <release_number>-gm: Description of what was in this
release/use JIRA version description"

5. git push origin M.m.v.rr-gm

Start On PROD machine ONLY

The numbers M.m.v.rr should be the same as the numbers for the RC branch.

1. git fetch

2. git checkout M.m.v.rr-gm

3. git submodule update --init --recursive

4. Validate things are working…
5. Finished with release cycle!

End On PROD machine ONLY

1. git checkout master

2. git pull

3. git merge --no-ff patch/<branch_name>

4. git push origin

Start On PROD machine ONLY

Make sure you are root user and in the Moodle directory

1. git fetch

2. git checkout master && git pull

3. git submodule update --init --recursive

4. Validate things are working…
5. Finished with hotpatch

End On PROD machine ONLY

Performing a hotpatch

1. git checkout -b update/M.m.v

2. git remote add core https://github.com/moodle/moodle.git

3. git fetch core

4. git merge -Xtheirs -m "CCLE-<ticket> - Upgrade to Moodle M.m.v" <version tag>

1. Might first want to try without the -Xtheirs if upgrading between minor versions.

5. Resolve conflicts
1. git add <conflicted_file>

2. If needed, continue the merge

6. Finish the pull.

Push to development, test on TEST, push to STAGE then release on PROD.

7. Be sure to notate the new RC and GM tags with the updated Moodle version M.m.v.00
8. To upgrade to a major release of Moodle, follow the instructions in this guide:

http://tjhunt.blogspot.com/2014/01/moving-ou-moodle-code-to-moodle-261.html

Upgrading to new version
from Moodle.org

https://github.com/moodle/moodle.git
http://tjhunt.blogspot.com/2014/01/moving-ou-moodle-code-to-moodle-261.html

Find the most popular activities:

Find the most active users over the past 7 days

(change the “604800″ to the number of the appropriate number of seconds if you want to adjust
this interval):

Find the most active courses:

Moodle MySQL Queries
Here are some Moodle
MySQL Queries that are
useful for generating
activity statistics:
From
http://blog.weber.k12.ut.us/jreeve/some-
simple-mysql-queries-for-moodle/

SELECT COUNT(l.id) hits, moduleFROM mdl_log lWHERE module != 'login' AND module != 'course' AND module != 'role'GROUP BY moduleORDER BY hits DESC

SELECT COUNT(l.id) hits, l.userid, u.username, u.firstname, u.lastnameFROM mdl_log l INNER JOIN mdl_user u ON l.userid = u.idWHERE l.time > UNIX_TIMESTAMP(NOW()) - 604800GROUP BY l.useridORDER BY hits DESC

http://blog.weber.k12.ut.us/jreeve/some-simple-mysql-queries-for-moodle/
http://blog.weber.k12.ut.us/jreeve/some-simple-mysql-queries-for-moodle/

(You may need to change the second line to FROM mdl_log l INNER JOIN mdl_course c ON l.course
= c.id AND c.id != ‘1′ to omit home page hits)

Find the number of resources per course:

SELECT COUNT(l.id) hits, l.course courseId, c.fullname coursenameFROM mdl_log l INNER JOIN mdl_course c ON l.course = c.idGROUP BY courseIdORDER BY hits DESC

Some custom written ones:

SELECT COUNT(l.id) count, l.course, c.fullname coursenameFROM mdl_resource l INNER JOIN mdl_course c on l.course = c.idGROUP BY courseORDER BY count DESC

Here at UCLA, the team that runs the main campus Moodle installation has decided to move to GIT
from SVN. The primary motivation behind this move is that Moodle.org is moving to GIT. It makes
sense for us to move because GIT is a distributed VCS, and it will make it easier to stay in sync
with Moodle.org.

One hurdle that we are trying to overcome is how to fit GIT into our internal development
workflow. As it stands now, SVN nicely fits into our workflow. Let me explain why.

In our workflow, we create feature branches to do most of our development. After the feature is
completed, it gets “svn merged” into a develop/test branch. At any given time the resources we
have doing testing and development fluctuate. There is no guarantee that the first feature merged
into the develop branch will get tested first.

Finally, once a feature is tested, it gets “svn merged” into stage. Testing happens once again
there, again in no given order. Once testing is completed on the feature it gets merged into the
master, or trunk branch.

SVN merge works nicely because when you do the merge, you can choose either a specific
revision, or a range of revisions.

Now onto GIT. GIT appears to work a bit differently. When you do a merge in GIT, you are merging
the entire history of a branch up to the changeset specified. GIT does not support merges in the
same way that SVN does. I’ve come up with a list of 5 options to accomplish the same, or similar
thing in GIT.

Option 2 represents GIT’s equivalent to what we currently do in SVN, but I’m not looking to copy

UCLA Moodle Workflow
Analysis (using GIT)
Summary

our SVN workflow just for the sake of keeping things the same. I want to do things the “right” way
in GIT.

https://bookstack.kb.ucla.edu/uploads/images/gallery/2020-12/gitworkflow.png

git merge from a feature branch to develop, then from feature branch to stage, and finally from
feature branch to master as the feature graduates its way through the workflow.

git merge —squash from the feature branch to develop. Subsequent merges can then be cherry-
picked as the feature graduates its way through the workflow. This would be the GIT equivalent to
SVN merges.

Proposed workflows to
accomplish what is
illustrated in the diagram:
Option 1

What the history would look like on
develop/stage/master:

*a37658bd merged in public/private| \| *a7785c10 another granular commit| *7f545188 added

more text| *2bca593b added some text to a file|/

Option 2

What the history would look like on
develop/stage/master:

git merge cherry-pick each revision from the feature branch to develop. Then continue to use git
cherry-pick to merge features to stage and master as they graduate through the workflow.

Do normal merges from feature branch to develop. Then to merge something to stage:

git branch tempbranch {last commit desired}
git rebase --onto stage {earliest commit that you DON'T want included as part of the merge}
tempbranch

*4d4a0da8 merged …*a37658bd merged in public/private*d9484311 merged …

Option 3

What the history would look like on
develop/stage/master:

*4d4a0da8 did something else unrelated to the below code*a7785c10 another granular

commit*7f545188 added more text*2bca593b added some text to a file*4d4a0da8 did another

thing unrelated to the above code

Option 4

What the history would look like on
develop/stage/master:

*4d4a0da8 did something else unrelated to the below code*a7785c10 another granular

commit*7f545188 added more text*2bca593b added some text to a file*4d4a0da8 did another

thing unrelated to the above code

Do normal merges from feature branch to develop. Then to merge something to stage:

git format-patch {earliest commit that you DON'T want included as part of the merge}..{last
commit you want merged}
git am *.patch

Option1

Merges always originate from each feature branch
Feature branches stick around in origin for a long time

Option2

Squash all merges into a single commit.
This is exactly how SVN behaves.
Feature branches would have to stay around forever unless you are ok with losing all the
history contained within them.

Option3

Feature branches are merged like normal, then you do cherry-picks to merge features up as
they graduate to the next branch.

Option 5

What the history would look like on
develop/stage/master:

*4d4a0da8 did something else unrelated to the below code*a7785c10 another granular

commit*7f545188 added more text*2bca593b added some text to a file*4d4a0da8 did another

thing unrelated to the above code

Notes and observations

History is preserved in the first develop branch, but then gets lost in the subsequent
branches.
This would be come nearly impossible to manage as you are having to manually cherry pick
potentially hundreds of commits each time a feature or two pass on one of the earlier
branches.

Option4

History of the branching is preserved on TEST
Once things get merged to stage and master, all history gets flattened
A little more complicated to perform basic merges than some of the other methods.

Option5

Results in same history as option 4
Little easier to use than option 4

Option 1 Option2 Option3 1.

git checkout develop
git merge A
git branch -d A
git push origin develop

git checkout develop
git merge —squash A
git commit -m “merging feature A to develop”
git branch -d A
git push origin develop

git checkout develop

Appendix: Full list of
commands

git merge A
git branch -d A
git push origin develop

2.

git checkout develop
git merge B
git branch -d B
git push origin develop

git checkout develop
git merge —squash B
git commit -m “merging feature B to develop”
git branch -d B
git push origin develop

git checkout develop
git merge B
git branch -d B
git push origin develop

3.

git checkout develop
git merge C
git branch -d C
git push origin develop

git checkout develop
git merge —squash C
git commit -m “merging feature C to develop”
git branch -d C
git push origin develop

git checkout develop
git merge C

git branch -d C
git push origin develop

5.

git checkout develop
git checkout B
start working on code

git checkout develop
git checkout B
start working on code

git checkout develop
git checkout B
start working on code

6.

git checkout stage
git merge C
git push origin stage

git checkout stage
git cherry-pick {revision from 3}
git commit -m “merging feature C to stage”
git push origin stage

git checkout stage
git cherry-pick {revisions in C}
git commit -m “merging feature C to stage”
git push origin stage

7.

git checkout stage
git merge A
git push origin stage

git checkout stage
git cherry-pick {revision from 1}
git commit -m “merging feature A to stage”
git push origin stage

git checkout stage
git cherry-pick {revisions in A}
git commit -m “merging feature A to stage”
git push origin stage

9.

git checkout master
git merge A
git push origin master
git push origin :A

git checkout master
git cherry-pick {revision from 7}
git commit -m “merging feature A to master”
git push origin master

git checkout master
ggit cherry-pick {revisions in A}
git commit -m “merging feature A to master”
git push origin master

10.

git checkout develop
git merge B
git branch -d B
git push origin develop

git checkout develop
git merge —squash B
git commit -m “merging feature B to develop”

git branch -d B
git push origin develop

git checkout develop
git merge —squash B
git commit -m “merging feature B to develop”
git branch -d B
git push origin develop

11.

git checkout stage
git merge B
git push origin stage

git checkout stage
git cherry-pick {revision from 10}
git commit -m “merging feature B to stage”
git push origin stage

git checkout stage
git cherry-pick {revisions in B}
git commit -m “merging feature B to stage”
git push origin stage

12.

git checkout master
git merge C
git push origin master
git push origin :C

git checkout master
git cherry-pick {revision from 6}
git commit -m “merging feature C to master”
git push origin master

git checkout master
git cherry-pick {revisions in C}
git commit -m “merging feature C to master”
git push origin master

13.

git checkout master
git merge B
git push origin master
git push origin :B

git checkout master
git cherry-pick {revision from 11}
git commit -m “merging feature C to master”
git push origin master

git checkout master
git cherry-pick {revisions in B}
git commit -m “merging feature C to master”
git push origin master

Feel free to add to this list.

A common usage of these functions is like this:

The problem is, if the query is executed successfully but matches no records, get_records() returns
false, the same as if there is an error. That triggers the error handling mechanism and might not
be what you want.

Since get_records() and its variants cannot tell between these two cases, use them only if you are
intentionally not checking for error or if you want to treat the case of no matched record as an
error too. For other cases, use get_recordset() or its variants. These functions return an
ADORecordSet object (if there is no error) or false (if there is an error).

Common Moodle
programming mistakes

Error handling of get_records()
and its variants (e.g.
get_records_sql())

$records = get_records() or my_error_handler();...

Result of get_records_sql()

get_records_sql() returns an array if there is at least one record. The function uses the first column
of the record set as the key of the result array.

If the SELECT statement only queries one table, and the first column is a primary key (e.g. id), the
function returns every row in the record set without problem. If the SELECT joins multiple tables, or
if the first column in the statement is not a primary, the function only returns some of the rows in
the record set, i.e. for each unique value of the first column, only the last record containing that
value. In such case, you should use get_recordset_sql() instead. get_recordset_sql() returns an
array that has consecutive keys starting with 0, and the keys are independent of the values in the
result set. This way, all records are present in the result array.

