
By default, a module is ignored by the backup and restore processes, i.e. its database entries are
not backed up or restored. To support backup and restore, the module needs to have the files
backuplib.php and restorelib.php in its directory, and the files should implement several functions
and in a certain way. Unfortunately, there is very little documentation out there about the
implementation. Moodle Doc only has one stub page on backup, and none on restore.

In addition to the GUI option for course backup Moodle provides api for backing up a course via a
script by passing the user options and modules.

The user starts by choosing which of the instances of modules to backup and whether to back up
user data. There are other settings such as whether to back up users at the bottom.

This page shows the user what will be backed up, and gives the user choices of proceeding or

Moodle module backup and
restore
Moodle module backup and
restore

Backup
The course backup process
Step One (backup_form.html)

Step Two (backup_check.html)

http://docs.moodle.org/en/Development:Backup

backing out.

The actual backup is done in this step. Modules take turn to write to the backup XML file while
their names are listed. If there is any error, this page also indicates that the backup failed for or
skipped that particular module. Finally, the files are compressed and the ZIP file is stored in the
files area.

backup.lib is responsible for including backuplib.php for each chosen module. This raises the
condition that none of the module names are alike and common files across modules can be
included exactly once.

Function backup_course_silently – takes user options from another function and process backup

Function backup_generate_preferences_artificially – generates user preferences to instruct the
backup process what modules, instances, user_data to be backed up.

Steep Three (backup_execute.html)

Functions
backup_execute() gets called from the
step three above and initiates the process
in backuplib.php

backup.lib

backup/lib.php

mod/MODULENAME/backuplib.php
MODULENAME_check_backup_mods($course,$user_data=false,$backup_unique_code,$instances=null)
— required

$course – the course to be backed up.

$user_data – array of objects. Each of these objects represents a module instance in the course,
and basically contains information from a record in mdl_MODULENAME. For example,

$backup_unique_code – a code unique to this backup action, apparently to avoid two backup
action being run twice.

$instances – array of objects. Each of these objects represents a module instance selected for
backup and has three properties: “name” (module instance name), “userdata” (1 if backing up
user data; 0 if not), “id” (module instance ID). For example, if the user chooses to back up Test
Label One (label #3) with user data and Test Label Two (label #4) without user data, $instance will
look like this:

Return value – information about instances of a module be backed up in Step Two. Its format is
that used by $table→data given to the print_table() function. That is, if the function return this
array:

Array (
0 => stdClass Object (
 [id] => 3
 [course] => 3
 [name] => Test Label One
 …
)
1 => stdClass Object (
 [id] => 4
 [course] => 3
 [name] => Test Label Two
 …
)
)

Array (
3 => stdClass Object (
 [name] => Test Label One
 [userdata] => 1
 [id] => 3
)
4 => stdClass Object (
 [name] => Test Label Two
 [userdata] => 0
 [id] => 4
)
)

Array ([key1] => Array ([key1a] => row 1 column 1 [key1b] => row 1 column 2) [key2] => Array ([key2a] => row 2 column 1 [key2b] => row 2 column 2))

Then the following table is printed in Step Two under the module’s heading:

row 1 column 1 row 1 column 2 row 2 column 2 row 2 column 2
Note that the content can contain HTML code, and that’s how the assignment module achieves the
effect of subheadings.

Replace domain-dependent links to pages within a module with some domain-independent short
form, so that the backup can be restored to another server and work. It looks like the format of the
short form is up to the developer of the module, as long as it is understood by function
MODULENAME_decode_content_links (which reverses the process). The modules I checked
replaced something like “http://www.yourname.com/yourmoodlesite/mod/MODULENAME
/somepage.php?param1=123¶m2=456” with something like “$ SOMETHINGYOUMAKEUP*$2*$3 $”.

$content – the original content with links to be encoded.

$perferences – don’t know what this is. It is not used in any of the modules I looked at.

Return value – the processed content with encoded links.

When restoring, you cannot just get the data and insert records without modifying, because any
foreign key you store is going to be invalid. For example, if you restore forum posts, the user IDs
associated with the posts will be different in the restored course from the original course.

Moodle solves this problem with the mdl_backup_ids table, which maintains a map between values
of IDs in the original course and the new course. Presumably, Moodle takes care of user, groups
and roles before the functions in your restorelib.php are called. So your functions will use the
following workflow:

1. When you prepare a record for insertion, if a field is an ID that changes in the
backup/restore process, use the backup_getid() function to get its value.

2. After inserting a record, note the insert ID (i.e. the id of the new record) and use the
backup_putid() function to store it in the mdl_backup_ids table.

3. Process the next item.

MODULENAME_encode_content_links($content,$preferences)
— optional

Restore
Backup IDs

http://www.yourname.com/yourmoodlesite/mod/

Revision #4
Created Wed, Jul 21, 2010 7:04 PM by Chan, Wing Kai
Updated Fri, Jul 23, 2010 6:36 PM by Chan, Wing Kai

