
Here at UCLA, the team that runs the main campus Moodle installation has decided to move to GIT
from SVN. The primary motivation behind this move is that Moodle.org is moving to GIT. It makes
sense for us to move because GIT is a distributed VCS, and it will make it easier to stay in sync
with Moodle.org.

One hurdle that we are trying to overcome is how to fit GIT into our internal development
workflow. As it stands now, SVN nicely fits into our workflow. Let me explain why.

In our workflow, we create feature branches to do most of our development. After the feature is
completed, it gets “svn merged” into a develop/test branch. At any given time the resources we
have doing testing and development fluctuate. There is no guarantee that the first feature merged
into the develop branch will get tested first.

Finally, once a feature is tested, it gets “svn merged” into stage. Testing happens once again
there, again in no given order. Once testing is completed on the feature it gets merged into the
master, or trunk branch.

SVN merge works nicely because when you do the merge, you can choose either a specific
revision, or a range of revisions.

Now onto GIT. GIT appears to work a bit differently. When you do a merge in GIT, you are merging
the entire history of a branch up to the changeset specified. GIT does not support merges in the
same way that SVN does. I’ve come up with a list of 5 options to accomplish the same, or similar
thing in GIT.

Option 2 represents GIT’s equivalent to what we currently do in SVN, but I’m not looking to copy
our SVN workflow just for the sake of keeping things the same. I want to do things the “right” way
in GIT.

UCLA Moodle Workflow
Analysis (using GIT)
Summary

https://bookstack.kb.ucla.edu/uploads/images/gallery/2020-12/gitworkflow.png

git merge from a feature branch to develop, then from feature branch to stage, and finally from
feature branch to master as the feature graduates its way through the workflow.

git merge —squash from the feature branch to develop. Subsequent merges can then be cherry-
picked as the feature graduates its way through the workflow. This would be the GIT equivalent to
SVN merges.

Proposed workflows to
accomplish what is
illustrated in the diagram:
Option 1

What the history would look like on
develop/stage/master:

*a37658bd merged in public/private| \| *a7785c10 another granular commit| *7f545188 added

more text| *2bca593b added some text to a file|/

Option 2

What the history would look like on
develop/stage/master:

*4d4a0da8 merged …*a37658bd merged in public/private*d9484311 merged …

git merge cherry-pick each revision from the feature branch to develop. Then continue to use git
cherry-pick to merge features to stage and master as they graduate through the workflow.

Do normal merges from feature branch to develop. Then to merge something to stage:

git branch tempbranch {last commit desired}
git rebase --onto stage {earliest commit that you DON'T want included as part of the merge}
tempbranch

Do normal merges from feature branch to develop. Then to merge something to stage:

git format-patch {earliest commit that you DON'T want included as part of the merge}..{last

Option 3

What the history would look like on
develop/stage/master:

*4d4a0da8 did something else unrelated to the below code*a7785c10 another granular

commit*7f545188 added more text*2bca593b added some text to a file*4d4a0da8 did another

thing unrelated to the above code

Option 4

What the history would look like on
develop/stage/master:

*4d4a0da8 did something else unrelated to the below code*a7785c10 another granular

commit*7f545188 added more text*2bca593b added some text to a file*4d4a0da8 did another

thing unrelated to the above code

Option 5

commit you want merged}
git am *.patch

Option1

Merges always originate from each feature branch
Feature branches stick around in origin for a long time

Option2

Squash all merges into a single commit.
This is exactly how SVN behaves.
Feature branches would have to stay around forever unless you are ok with losing all the
history contained within them.

Option3

Feature branches are merged like normal, then you do cherry-picks to merge features up as
they graduate to the next branch.
History is preserved in the first develop branch, but then gets lost in the subsequent
branches.
This would be come nearly impossible to manage as you are having to manually cherry pick
potentially hundreds of commits each time a feature or two pass on one of the earlier
branches.

Option4

History of the branching is preserved on TEST
Once things get merged to stage and master, all history gets flattened
A little more complicated to perform basic merges than some of the other methods.

What the history would look like on
develop/stage/master:

*4d4a0da8 did something else unrelated to the below code*a7785c10 another granular

commit*7f545188 added more text*2bca593b added some text to a file*4d4a0da8 did another

thing unrelated to the above code

Notes and observations

Option5

Results in same history as option 4
Little easier to use than option 4

Option 1 Option2 Option3 1.

git checkout develop
git merge A
git branch -d A
git push origin develop

git checkout develop
git merge —squash A
git commit -m “merging feature A to develop”
git branch -d A
git push origin develop

git checkout develop
git merge A
git branch -d A
git push origin develop

2.

git checkout develop
git merge B
git branch -d B
git push origin develop

git checkout develop
git merge —squash B
git commit -m “merging feature B to develop”
git branch -d B
git push origin develop

git checkout develop
git merge B

Appendix: Full list of
commands

git branch -d B
git push origin develop

3.

git checkout develop
git merge C
git branch -d C
git push origin develop

git checkout develop
git merge —squash C
git commit -m “merging feature C to develop”
git branch -d C
git push origin develop

git checkout develop
git merge C
git branch -d C
git push origin develop

5.

git checkout develop
git checkout B
start working on code

git checkout develop
git checkout B
start working on code

git checkout develop
git checkout B
start working on code

6.

git checkout stage
git merge C
git push origin stage

git checkout stage
git cherry-pick {revision from 3}
git commit -m “merging feature C to stage”
git push origin stage

git checkout stage

git cherry-pick {revisions in C}
git commit -m “merging feature C to stage”
git push origin stage

7.

git checkout stage
git merge A
git push origin stage

git checkout stage
git cherry-pick {revision from 1}
git commit -m “merging feature A to stage”
git push origin stage

git checkout stage
git cherry-pick {revisions in A}
git commit -m “merging feature A to stage”
git push origin stage

9.

git checkout master
git merge A
git push origin master
git push origin :A

git checkout master
git cherry-pick {revision from 7}
git commit -m “merging feature A to master”
git push origin master

git checkout master
ggit cherry-pick {revisions in A}
git commit -m “merging feature A to master”
git push origin master

10.

git checkout develop
git merge B
git branch -d B
git push origin develop

git checkout develop
git merge —squash B
git commit -m “merging feature B to develop”

git branch -d B
git push origin develop

git checkout develop
git merge —squash B
git commit -m “merging feature B to develop”
git branch -d B
git push origin develop

11.

git checkout stage
git merge B
git push origin stage

git checkout stage
git cherry-pick {revision from 10}
git commit -m “merging feature B to stage”
git push origin stage

git checkout stage
git cherry-pick {revisions in B}
git commit -m “merging feature B to stage”
git push origin stage

12.

git checkout master
git merge C
git push origin master
git push origin :C

git checkout master
git cherry-pick {revision from 6}
git commit -m “merging feature C to master”
git push origin master

git checkout master
git cherry-pick {revisions in C}
git commit -m “merging feature C to master”
git push origin master

13.

git checkout master
git merge B
git push origin master

git push origin :B

git checkout master
git cherry-pick {revision from 11}
git commit -m “merging feature C to master”
git push origin master

git checkout master
git cherry-pick {revisions in B}
git commit -m “merging feature C to master”
git push origin master

Revision #11
Created Tue, Mar 8, 2011 6:56 PM by Thompson, Nicholas David
Updated Fri, Jul 15, 2011 6:42 PM by Williamson, James

