
Lucene spans
Lucene term documents and term positions
Pure negation query in lucene
Why are Lucene's stored fields so slow to access
Lucene
Compiling Lucene with GCJ

Lucene

In Lucene, a span is a triple (i.e. 3-tuple) of <document number, start position, end position>.
Document numbers start from zero. The positions are term positions, not character positions, and
start from zero (i.e. the first token of a field has position 0, the second token has position 1, etc.).
Start position is the position of the first term in the span. End position is the position of the last
term in the span + 1.

For example, say document 1 has the following terms:

Term This is an Apache Lucene test Position 0 1 2 3 4 5
Then “Apache Lucene” matches a span <1 (document number), 3 (first term’s position), 5 (last
term’s position + 1)>.

You don’t have to deal with spans directly. If you create a span query, Lucene takes care of
matching the spans for you. Span query cannot be parsed by the default query parser that ships
with Lucene. Instead, you create an instance of SpanQuery and give it to other classes like
IndexSearcher.

Lucene spans
Introduction

Using spans
Span queries

Direct access

You can also using the Spans class. A Span class represents a series of spans instead of a span. It
is also an iterator of spans. The easiest way of creating a Span object is to use the
SpanQuery.getSpans method, which returns a series of spans matched by a span query (in the
form of a Spans object).

Queries like “phrase A” within a distance of “phrase B” can be done using span queries. The API
reference has an example of how to query for something like “‘John Kerry’ near ‘George Bush’”.

The Spans interface makes it very easy to get the document count and occurrence count of a word
or a phrase (actually, anything that a SpanQuery can represent) in a document set. It can be done
by iterating through a Spans object. You can even count how many times phrase A is within a
certain distance of phrase B in the document set.

A typical span query seems to take about twice as long as a typical phrase query, which in turn
takes about twice as long as a term query. If you can get away with using a phrase query or even
a term query, you might want to do so. For example, “term A near term B” can be done using a
phrase query with a non-zero slop.

Application
Proximity search

Word and phrase counts

Performance

http://lucene.apache.org/java/2_3_2/api/org/apache/lucene/search/spans/SpanQuery.html#getSpans(org.apache.lucene.index.IndexReader)
http://lucene.apache.org/java/2_3_2/api/org/apache/lucene/search/spans/package-summary.html

For each term T, there are (doc frequency of the term) tuples of <doc ID, freq of T in this doc>.

This information is stored in the .frq file and accessible via the TermDocs interface.

For each term T, there are (doc frequency of the term) tuples of <doc ID, freq of T in this doc,
(term freq of T in this doc) counts of positions of T in this doc>.

This information is stored in the .prx file and accessible via the TermPositions interface.

If you use Query classes, they get and make use of term documents and term position so you do
not have to worry about them. Non-span queries other than phrase queries use term documents
only. Phrase queries uses term documents + term positions to make sure that a document actually

Lucene term documents
and term positions
Introduction
Term documents

Term positions

Using the information
Via Query

http://lucene.apache.org/java/2_3_2/api/org/apache/lucene/index/TermDocs.html
http://lucene.apache.org/java/2_3_2/api/org/apache/lucene/index/TermPositions.html

have the terms, say, right next to each other and in order. This makes phrase queries slower than
term queries, i.e. searching for the phrase “southern california” show be slower than searching for
required words “southern california”.

Lower-level than queries is the spans API. The Spans class is still higher-level than using
TermPositions directly.

Note that the document number (returned by doc()) and frequency (returned by freq()) of a
TermDocs object is undefined until next() is called the first time. This is unclear from the API
reference but I have found this out by experiment.

Via the interfaces

In many information-retrieval system, you can use queries like “term1 AND (NOT term2)” but you
cannot use queries like “NOT term2” on their own (e.g. to get only documents that do not contain
term2). At least the system returns no result even if some documents do not contain term2. This is
because:

Most of these system uses inverted indices, which are essentially “term => document list”
mappings. There is no way to reconstruct a list of documents for “NOT term2” from such a
mapping.
The system can generate a set of all document and then subtract those that contains term2
from the set. This can be resource-intensive (e.g. needs O(doc count) storage and
processing time) and can be misused by users.

Despite the difficulties, users of some system might need this kind of query. In Lucene, there are
two ways to support it:

When indexing, create a field (e.g. “exists”) with a constant value across documents (e.g.
“true”). Then rewrite the query “NOT term2” into “+exists:true -term2”.
Combine MatchAllDocsQuery, which matches all document, with BooleanQuery. The code
will look like this:

// Create a query that matches something like “everything AND NOT term2”

MatchAllDocsQuery everyDocClause = new MatchAllDocsQuery();

TermQuery termClause = new TermQuery(new Term(“text”, “term2”));

BooleanQuery query = new BooleanQuery();

query.add(everyDocClause, BooleanClause.Occur.MUST);

query.add(termClause, BooleanClause.Occur.MUST_NOT);

…

IndexSearcher searcher = new IndexSearcher(“/path/to/index”);

Hits hits = searcher.search(query);

Pure negation query in
lucene

http://lucene.apache.org/java/2_3_2/api/org/apache/lucene/search/MatchAllDocsQuery.html

// hits contains only documents that do not contain term2

I have a Lucene index that has some large fields (about 50 KB each) and some small fields (about
50 bytes each). I need to access (iterate) one of the small fields for say 1/10 of the documents. For
some reason, such operation is very slow, unreasonably so for such a small field.

Lucene provides a number of “policies” of how to access fields of a document. (See class
org.apache.lucene.document.FieldSelector.) They specify when and how fields are loaded from the
index. It turns out that the default is to load all fields in the document as soon as a Document is
requested by, say IndexReader. (See class org.apache.lucene.index.FieldsReader, in particular,
how it implements the doc(n, FieldSelector) function.) Therefore, when you load a small field, the
large fields are also loaded, causing performance problem if you repeat the operation many times.

The class org.apache.lucene.document.FieldSelectorResult provides several “policies” that you can
use. The most interesting one w.r.t. our problem is FieldSelectorResult.LAZY_LOAD. It basically
specifies that a field is lazily loaded (i.e. loaded only when needed).

To use this policy, create a FieldSelector object.

Why are Lucene's stored
fields so slow to access
Problem

Cause

Solution

http://lucene.apache.org/java/2_3_2/api/org/apache/lucene/document/FieldSelector.html
http://lucene.apache.org/java/2_3_2/api/org/apache/lucene/document/FieldSelectorResult.html

When you request the document from an IndexReader, pass this object too.

Note that to get the field, use the Document’s getFieldable(String) method instead of
getField(String). This is according to the API reference.

Within a document, stored fields are read sequentially. (See Index File Formats.) In theory,
accessing the first fields should be faster than reading the last ones.

Fields are ordered and their orders are stored implicity in the .fnm file. The order that the fields
are read from should be the same as the order that you create the fields. To gain performance,
create frequently used (and small) stored fields first.

For some reason, this is still slower than indexing the field and then iterate through all the terms in
the field. I looked closer and found another bottleneck.

A Lucene index stores the lengths of the fields in terms of character count, not byte count; Also, a
character can be more than a byte long. As we have seen, Lucene stores and processes the fields
sequentially. Even if it does not load a field, it must read the whole content of a field to get to the
next field. If a large field is not loaded but is before a small field that is loaded, the processing time
depends on the length of both fields, not just the small ones.

FieldSelector lazyFieldSelector = new FieldSelector() {	public FieldSelectorResult accept(String fieldName) {	 return FieldSelectorResult.LAZY_LOAD;	}};

IndexReader reader;...// Open the index reader...Document doc = reader.document(docId, lazyFieldSelector);

Fieldable fieldable = document.getFieldable(fieldName);String value = fieldable.stringValue();// Use the field value

Solution

Cause

http://lucene.apache.org/java/2_3_2/api/org/apache/lucene/document/FieldSelectorResult.html#LAZY_LOAD
http://lucene.apache.org/java/docs/fileformats.html#Fields

The problem will not happen if the field you need to iterate is placed before the large fields, and if
you ask the FieldSelector to stop at the field you want.

Say you want to iterate only field “field1”. Then create a FieldSelector that only loads field1 and
stops at this field. When creating the index, remember to put the large fields after field1.

The rest of the code should be the same.

Solution

String fieldToIterate = "field1";...FieldSelector lazyFieldSelector = new FieldSelector() {	public FieldSelectorResult accept(String fieldName) {		if (fieldName.equals(fieldToIterate))			return FieldSelectorResult.LOAD_AND_BREAK;		else			return FieldSelectorResult.NO_LOAD;	}};

Lucene – Apache Lucene is a high-performance, full-featured text search engine library written
entirely in Java. http://lucene.apache.org/java/docs/

Lucene

http://lucene.apache.org/java/docs/

Lucene is a open-source search library written in Java.

GCJ is a Java to native-executable compilter. As shown in a LinuxJournal article, using gcj is similar
to using gcc.

As of 1/26/08, the latest version of Lucene is 2.3.0. It needs Java SE 1.4 to compile and run. GCJ
3.3.6 doesn’t work because apparently, it doesn’t support classes in Java 1.4 (e.g. the new regular
expressions classes and functions and NIO stuff). GCJ 3.4.5 and 3.4.6 works. I haven’t tried version
4.x yet.

Get Lucene’s binary. You need lucene-core-2.3.0.jar. There is another JAR file lucene-demos-
2.3.0.jar that contains the demos, which are useful to check that your copy of GCJ is working.

You get GCJ by installing GCC. A how-to of installing GCC 3.3.6 can guide you through that.
Basically there are four steps in the process (after downloading and uncompressing the source
files):

configure (I used ./configure —prefix= —with-as=/usr/ccs/bin/ —with-ld= —disable-nls

Compiling Lucene with GCJ
Background

Versions Used

Installing Lucene

Installing GCC

http://lucene.apache.org/
http://gcc.gnu.org/java/
http://www.linuxjournal.com/article/4860
http://www.apache.org/dyn/closer.cgi/lucene/java/
http://www.linuxfromscratch.org/blfs/view/cvs/general/gcc3.html

—enable-libgcj
make bootstrap
make check (I think this one is optional)
make install

If you use Windows, you don’t need the steps above. Just get MinGW and install GCC from it.

Lucene comes with a pair of indexer and searcher in their demo collection. They have a page that
explains how to compile and run the demo.

You can compile the indexing with the following command:

That should create an executable file called indexer in the same directory. Run it and it should
show the usage and exit.

When you run the indexer, it might complain that “ld.so.1: indexfiles: fatal: libgcj.so.5: open failed:
No such file or directory”. Basically, it tries to find this run-time shared library but can’t find it.
You’ll have to tell it where to look at. E.g. in bash, use the following command:

You can compile and run the searching in a similar way.

Testing

/path_of_gcj/bin/gcj lucene-core-2.3.0.jar lucene-demos-2.3.0.jar -o indexer --main=org.apache.lucene.demo.IndexFiles

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path_of_gcj/lib

http://lucene.apache.org/java/docs/demo.html
http://lucene.apache.org/java/docs/demo.html

